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i Introduction

In a large number of scientific areas, one needs to store data (e.g. signals, images, or statistical
samples) in the form of arrays. In the classical approaches one considers two-dimensional arrays only
which are usually referred to as the contingency tables or simply as matrices. A number of properties
of the data could be investigated in terms of the structure of the linear algebra generated by these
matrices. However, one could also store date instead in the form of multi-dimensional arrays, one
reason for doing this lies in storing the large data in a compact way. This kind of representation
of data has been found to be very useful in many signal processing applications especially in the
processing of image data such as satellite reconnaissance photographs, medical imagery including
X-ray images, seismic records, and electron micrographs. Consequently, there has been considerable
interest in the recent past to develop fast algorithms for computing multi-dimensional transforms
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and convolutions, (2], [7). Besides these, there are other applications of multi-dimensional arrays
in some areas such as the design of experiments, transportation planning and defense strategic
planning [13]. Further, in the design of VLSI structures, multi-dimensional arrays play a significant
role. For example, some companies have designed separately 3-D microelectronic structures but
several major problems need to be overcome before such 3-D architectures become commercially
available.

In all the work done so far to develop the theory of multi-dimensional arrays, there has been no
attempt to define a multiplication operator, the operators which are in current use are the straight-
forward extensions of the usual definitions of matrix addition and scalar multiplication. It is thus
natural to think of constructing a higher dimensional analog of the concept of matrix multiplication
and explore its applications.

Our initial interest in the study of multi-dimensional arrays came from our recent work on
combinatorics [11]. The concept of association schemes is well-known in combinatorics with ap-
plications in coding theory and design of experiments. Corresponding to an association scheme,
there is an associative algebra, called the Bose-Mesner algebra which is instrumental in studying
the properties of association schemes. Several people have studied extensively the properties of
the Bose-Mesner algebra from the point of view of combinatorics and algebraic coding theory; the
theory now appears in [1], [6], [10]. In [41], we defined a combinatorial structure called an associa-
tion scheme on triples, in short, an AST which is a higher dimensional analog of the association
schemes and also developed a non-associative ternary algebra which is a generalization of the
Bose Mesner algebra. Several examples of AST’s have been constructed by us using 2-designs,
2-transitive permutation groups and two graphs; some of our constructions give infinite families
of AST’s. One motivation of ours for extending the concept of association schemes to higher di-
mensions was to formulate the concept of block design which is partially balanced with respect to
a 3-subset. The ternary algebra has been investigated further by us in [12].

There are some interesting applications of multi-dimensional arrays in digital signal processing,
control theory, statistics and biological sciences (see for example, [3]-[4]; [9], [13]). However, in none
of these works any algebra (ternary or n-ary) has been defined.

NOTATION

For any m x n matrix X, the (4, 7) entry is denoted by (X);;.

In what follows, a three-dimensional array of elements from any field will be called a three-
dimensional matriz, or often, briefly, a matriz. (It will be clear from the context whether the
matriz is 2-dimensional or 3-dimensional).

If A is any m X n X ¢ matrix and s, t are fixed integers, 1 < s < m and 1 <t < n, then

(A)ijx denotes the (2, j, k) entry of A.

A,.. denotes the n X ¢ matrix whose (j, k) entry is (A), ;.

A, denotes the g-dimensional vector whose kt* component is A, . Similarly, one defines
matrices A.,., A..;, A.5 etc by changing the ranges of s and t suitably.

(The n x ¢ matrices A,.., 1 < 8 < m represent the m vertical plane-sections of the three-
dimensional matrix A. This also gives a convenient method to list the elements of the matrix).

If{D*:1<a<u, 1<b<v}isa family of matrices of size m x n each, then (D~);; denotes
the u x v matrix whose (p, q) entry is (D?9);;.



2 Transform

2.1 Background

A discrete tra~ ~form of an m X n matrix A is defined (for example, in Rosenfeld [14, p.21]) as the
product

F = PAQ (1)

where P and Q are certain given nonsingular m X m and n X n matrices respectively. Thus, for
1€i<m,1<j<n,

m n
(Fii = 3. Y _(Pir(A)ra(Q)sj (2)
r=1s=1
Since P and Q are nonsingular, one can compute the inverse transform of F. By specializing P and
@ one obtains a number of transforms, the most well known among them is the discrete Fourier
Transform which is obtained by choosing nonsingular matrices P and Q in (1) such that

- TSy —

(Pl = 2 exp(ZIYL) Q) = Lexp( 2V, )
where 1 < 4,7 < m and 1 < r,s < n. The Fourier transform has found a very wide range
of practical applications (for a survey of its properties and also a number of other widely used
transforms such as the Hadamard Transform, Sine and Cosine Transforms, etc. see, for example,
[7]). The development of a fast algorithm by Cooley and Tukey in 1965 to compute the Fourier
transform has revolutionized a number of areas such as medical diagnostics using the CAT scan
(see for example, Blahut [2] for a survey of Cooley and Tukey’s theory and later developments).

In the definition of the discrete transform given by (1), if P, A,Q are all n X n matrices. then
the total number of multiplications needed to compute F is O(n*). For, in (2) consider a fixed
(3,7)- In order to compute F;; one performs n? multiplicatious corresponding to the n? terms in
the double summation, assuming that all the products of the form (P);, and (Q),; have been pre-
computed and stored for use whenever required. As there are n? choices of (i, j), the total number
of multiplications is O(n*).

Let A, B, C be 3-dimensional matrices such that A is of size m x n x ¢, B isof size px m x ¢
and C is of size p X n X m. Then the ternary product Y = ABC is a matrix of size px n X g
defined by

Y = i(A)hjk(B)ihk(C Jisn (4)

h=1
The ternary product is neither associative nor commutative. However, it is multi-linear. Two pairs
of matrices (A, B) and (A', B') are called (left) equivalent if

ABX = A'B'X (5)

for every conformable matrix X. It is easy to see that this is an equivalence relation on pairs of
matrices of given dimensions. A pair C, D is a (left) inverse pair of A, B if

CD(ABX)= X (6)
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for every conformable X . If (C, D) is an inverse pair of (A, B) then so is any pair (C’, D) equivalent
to (C, D). A pair of matrices (A, B) may not always have an inverse pair, if it has an inverse pair,
then we refer to (A, B) as an invertible pair.

2.2 New 'l‘ransfornﬁ

Definition 2.2.1 A New 3D Transform. Let (P,Q) be a pair of invertible matrices of sizes
m X n X qand p X n X q respectively. Let A be a matrix of size p x m x q. Then, the transform of
A is the matrix B of size p X n X ¢ given by

m

(B)ijk = 3 (P)ajk(Q)ink( Az (7)

h=1
Thus, using the ternary product defined in (3), we have that

Definition 2.2.1 is quite general in the sense that corresponding to various choices of invertible
pairs (P, Q) one would obtain different transforms of the given matrix. In Section 4 we shall take
a number of families of invertible pairs which we have worked out in [12] and use them to obtain
specific transforms.

2.2.2 Some New 2D Transforms. Using Definition 3.1, we can obtain as special cases two
new 2-dimensional transforms: we shall refer to them for convenience as transforms of Type 1
and Type 2 ; these transforms are both new in the sense that they are distinct from the discrete

transform given by (1).
(i) Type 1 Transform. Put in (4) i = a where a is any (fixed) integer such that 1 < a < p.
Then (4) givesforall 1 < j<n,1<k<gq,

m

Baji = Y (P)hjk(Q)art(A)ajn

h=1

Using the notation described in Section 1, this implies that

B,.. = PQ,..Aa. 9)
Thus, we have a new 2-dimensional transform B,.. of the m x ¢ matrix A,.. . (Notice that the
matrices (P, Q,..) form an invertible pair since (P, Q) is an invertible pair.)

(i) Type 2 Transform. To obtain the transform of Type 2, fix in (4), j = § where 1 < 8 < n,
getting

Bg. = Pg.QA. (10)

which gives a transform of A.gs. (Again, notice that (Pg.,Q) is an invertible pair since (P, Q) is.)

2.2.3. A New 1D Transform. In (4) fix i = o,k = 3, say. Then, it follows from (4) that for
all 1 <j <n,

m

Bajg = Y_(Phjo(A)ans(Q)ash (11)
h=1




and so using the notation described in Section 1, this implies that

By = P.3A0pQa. =(Psg® Q.. )Aa3) (12)

Notice that the right hand side of equation (7) is the usual matrix product of the Hadamard
product of the matrices P.g and Q,.. with the matrix A,.5. We can also devise variations of (7).
For example, we have the transforms B.,5 and B,g. obtained from (4) in a similar manner.

Remark 2.2.4. A conceptual advantage enjoyed by the new 2-dimensional transforms defined
in 4.2 for an n X n matrix over the iraditional discrete transform given by (1) can be seen as follows.
Any family F of n matrices each of size n X n can be represented by an n X n x n array A, say, where
each vertical layer A;.., 1 < i < n represents the i*® matrix of the set F. If B is the transform of A
according to Definition 2.2.1 (corresponding to a given pair of invertible matrices the vertical layers
B;.. of B give the 2-dimensional transforms of Type 1 defined above of the matrices A;... Thus, all
the matrices of the given family F can be transformed in one step by computing the 3-dimensior al
transform of A using Definition 2.2.1. (Another possible way of representing the matrices of the
family F is by taking the horizontal layers of A to be the members of ¥. Then, the transform of
Type 2 of each member of F can be computed from the 3-dimensional transform B by taking its
horizontal layers.) Thus our proposed 3-dimensional transform is aimed at computing collectively
the transforms of a family of matrices instead of computing them individually one by one. So, the
3D transform is quite suitable for the computation of 2D transforms (of Type 1 or Type 2) of a
large family of matrices.

Remark 2.2.5 The total number of multiplications needed to compute the discrete transform
(7) is O(n*). In computing the 2-dimensional transforms of Type 1 and Type 2 defined in this
section, the total number of multiplications for each of these is O(n3). It is well known that the
architecture of a computer (sequential or parallel) is such that the operation of multiplication takes
much more time to perform as compared to addition.

o Thus there is a significant computational advantage in the transform given by Definition
2.2.1 over the standard discrete transform given by (7) since they involve O(n®) and O(n*)
multiplications respectively.

The following result describes some basic properties of the 3D transform.
Proposition 2.2.6. (i) If (P,Q) and (P',Q’) are two equivalent invertible pairs, then

B=PQA, B =PQA=B=58 (13)
where the matrices are assumed to be conformable for forming ternary product.
(ii) If (R, S) is the inverse pair of a given invertible pair (P, Q), then
B=PQA=> RSB=A. (14)

It follows from 2.2.6 that our proposed transform does have some desirable properties which is
expected of a transform; in particular, if B is the transform of A, then it is possible to recover A
uniquely from B.

Remark 2.2.7. Let B be the transform of A according to Definition 2.2.1. Then for any
integers a and B with 1 < a < m and 1 < B < n, one has from [12, (6), 4.7] that

Bog. = Aap.FP°. (15)

[ ]




where

FPe := P, 0 Q. (16)

In (15) the product on.the right hand side of the equation is the usual matrix product of 2-
dimensional matrices and in (16) the product @ is the standard Hadamard product. We have
shown [12, 4.10] that the square matrix F is invertible if (P,Q) is an invertible pair: this is
indeed the case in the present situation. Now, comparing (15) with the definition of the discrete
transform given by (1), one sees that B,g. is a discrete transform of the matrix A,g. . In other
words, there are certain slicesin B which are the discrete transforms of certain slices of A by some
matrices which are obtained from the given invertible pair (P, Q). For example, if we choose matrix
FoB guch that

1 1 1 eee 1 ]
1 w w? .. ot
I'.,aﬂ_ PO ) ©o . ) (17)
1 Wi w .. w(n-—l)t
e ]

then each F°8 obtained by (16) is the Fourier transform of A,g for all admissible values of a, 8.
Thus if we can find invertible pairs (P, @) such that some of its slices given by (16) have nice forms
(such as some well known 2-dimensional transform like (10)) then the three-dimensional transform
thus obtained from Definition 2.2.1 is such that some of its specific slices are the corresponding
two-dimensional transforms.

Remark 2.2.8. Let A,3., Top. be two one-dimensional matrices and ALp.» Tgp. be their Fourier
transforms respectively. Let C,p. be the cyclic convolution of A,p. and T,g. and let C;B, be the
Fourier transform of C,g.. Then, by the well known convolution theorem ([2]) one has that

C;p. = A;ﬁ. © T;a. (18)
Now, clearly
ALp = Aap.FP®, T35 = Bap.FP*, Clg=Cop.FP* (19)
So,
Cap.FP® = (Aap.F?) © (Bap.F°F) (20)
or,
Con. = 1 A.q o8 B.g.F®) 21
af. = Fﬁa( af-. )O( afl- ( )

Thus for the proposed three-dimensional transform we see that (21) is an analog of the well known
convolution theorem.



3 Special Cases of Transforms

As remarked in Section 3, different choices of invertible pairs in the Definition 2.2.1 would give
different classes of transforms for a given three-dimensional matrix A. In this section we shall
describe two specific choices oi invertible pairs arising in a combinatorial setting and obtain the
corresponding transforms.

3.1 Background

The ternary product defined in (4) generates an algebra (called a ternary algebra) for all matrices
with real entries of a given size v X v X v. Such a ternary algebra arises in a natural way from a
combinatorial structure proposed by us called an association schemes on triples (AST) ([41]).
Any AST has a set of relations Ry, ..., Rm, say, of which the relations Ry, ..., R4 are called the trivial
relations in the sense that they are the same in every AST, the relations R; for i = 4,...,m are
called the nontrivial relations. Now, each R; can be represented in a natural way by an adjacency
malriz A;, say, of size v X v X v where v is the cardinality of the set 2 on which the AST is defined.
It has been proved by us ([41, Theorem 2.1)) that the 3-dimensional matrices 4;, 0 < ¢t < m
generate a ternary algebra. Further, we have proved that the adjacency matrices corresponding to
the nontrivial relations in an AST form a subalgebra of the full ternary algebra. We have shown
([41]) that a large number of AST’s can be coustructed (including several infinite families) from
combinatorial structures like the projective planes, block designs, and permutation groups: so, we
have a rich supply of the corresponding ternary algebras. Interestingly, in a large number of these
AST’s there are only two nontrivial relations and so the corresponding ternary subalgebra generated
by the nontrivial adjacency matrices has dimension 2. For a pair of 3-dimensional matrices lying
in any such 2-dimensional ternary algebra, we have worked out in [12, Section 5] a number of
techniques to determine if it is invertible or not and if so to compute explicitly the inverse pairs.
In the following suvs2ctions, we make use of these techniques to choose invertible pairs from some
of these ternary algebras and then obtain the corresponding 3D transforms according to Definition
2.2.1. It is not necessary that in the transform according to Definition 2.2.1 the matrix 4 should
lie in the ternary subalgebra: it can lie in the entire ternary algebra.

3.2 3D Transforms using the Projective Special Linear Group

In [41, Theorem 4.1}, we have proved that given any 2-transitive permutation group G acting on
a set §, the orbits of G in its natural action on © X @ x € form the relations of an AST. Using
this result, many examples of AST"s can be constructed by taking various 2-transitive permutation
groups. In particular, if one takes G to be the group PSL(2,q) in its action on the projective line
of ¢ + 1 points, then one has an AST which has precisely two non-trivial relations if ¢ is odd. and
only one non-trivial relation if ¢ is even. Thus, if ¢ is odd, then for the ternary algebra arising from
the AST constructed in this manner, one has that the corresponding subalgebra F is of dimension
2. We have proved:

Proposition 3.2.1 For a pair (A, B) of matrices given by

A= A4 + aA5, B = bA4 + CA4 (22)

with b # 0, one has that in the subalgebra F for the AST constructed from PSL(2,q) where q is
odd, an inverse pair (C, D) where




C = Ay + aAs, D=p8A,+7As (23)

may be determined as follows:
(i) If g = 4t + 1, assume that a # ~1 and b # —c. Then, one has that 8 = (4t2)~! a.:d a,7
must satisfy the following non-linear equation :

(4t30)y(1+a)+a = ~(ab+ac+c)(1 +a) ' (b+ )L (24)

In particular, if for ezample, a = 0, then an inverse pais is given by

C = A4, D =(4t20)"" A4 - (ab+ ac + c)(1 + @)~} (b+ c)"F As) (25)
(ii) If ¢ = 4t + 3, assume that b = —ac and that (b+ ¢ + ab) # 0. Let

u:=acb+c+ab)”?!, v:i=(2+1)%b+c+ab)! (26)
Then

B=v(1-u)" (27)

provided u # 1, and a,y must satisfy the linear equation

v+af = (2t+1)7%7" - 25. .- (28)

In some special cases, it is much easier to compute inverse pairs than the method described
in 3.2.1. It follows from 3.2.1 that we have a plenty of choice for selecting invertible pairs in the
ternary algebra arising from PSL(2,¢). For example, in 3.2.1 when ¢ = 4t 4+ 1 choosing A and B
such that b = 1,c¢ = 0 would readily give the pair (44 + aAs, As) which is invertible and whose
inverse pair is easily seen to be

:1% 1 : aAS} (29)
Here. the adjacency matrices of the AST are of size v X v X v where v = g+ 1 = 4t 42 for any integer
t > 1. This gives us a transform for any matrix in the ternary subalgebra. Notice that one can
construct explicitly the matrices (P, Q) for each choice of t. Note that here we take P = A4+ aAs,

Q’—‘As.

C=A4,D= {A4-

3.3 3D Transforms from Block Designs

A 2-design (X, B) with the parameters b, v, k, A is a family of k-subsets of a set X which are called
blocks such that any 2-subset of X lies in exactly A blocks, |X| = v, |B| = b. In [41, Theorem 3.1,
we showed that for a 2-design with A = 1 and k 2 4, one can construct an AST which has precisely
two non-trivial relations R4 and Rs where R4 consists of all triples (z,y, z) such that {z,y, z} lies
in some block of B and Rs consists of all triples (z, y, z) such that {z,y, z} does not lie in any block
of B. So, for this AST one has that the corresponding subalgebra F has dimension 2 and we have
developed a method to compute inverse pairs which is similar to the proof of Proposition 4.2.1. It
is interesting to note that in this case F is commutative.




3.4 3D Transforms from Affine groups

We have obtained the following result on how to construct an AST from the affine group.

Proposition 3.4.1 Consider the action of the affine group AGL(1,q) acting as a 2-transitive
permutation group on the finite field GF(q). Then, one obtains an AST with q + 2 relations con-
sisting of the orbits of AGL(1,q) on Q x Q x Q where Q = GF(q). Here, each non-trivial relation
has a unique (orbit) representative of the form

(0,1,d), de GF(q)\{0,1} (30)

If A® denotes the adjacency matriz of the relation containing the element (0,1,a) for any a €
GF(q)\ {0,1}, then for a,b,c € GF(q)\ {0, 1}, we have that

A ifc=a(a+b-1)"Vbc#1

0 otherwise Further, if

AaAbAc = {
b, c € GF(q)\ {0, 1} such that bc = 1, then

LAYAS =1, A'LA =1, APA°Ly =1,

and if bc # 1, then all the three ternary products above are equal to 0.

When ¢ = 5, then it follows from 4.4.1 that the AST thus obtained has exactly three nontrivial
relations and the corresponding adjacency matrices are denoted in the above notation by 42, A3, A4
and let F be the ternary subalgebra generated by these matrices (note that here A3 is different
from the product AAA). In the following result we give an explicit expression to compute inverse
pairs in this particular subalgebra.

Proposition 3.4.2. Consider the ternary subalgebra F spanned by the nontrivial relation
matrices in the AST generated by the action of AGL(1,5) on GF(5). A factor pair (A,B) in F
has an inverse pair (C, D) in F only in the following two cases:

Casel. If

A = apA? + agA*, B = by A% + by A (31)

thea the (left) factor pair (A, B) has an inverse pair (C,D) if and only if az,a4,b3,by are all
nonzero, and then one has that

C = k(1/aA% + 1/a4A3%), D = (1/k)(1/b3A? + 1/byA%) (32)
where k is an arbitrary nonzero number. '
Case 2. If
A= 03A? § 0343, B = byA? + byA* (33)

then (A, B) has an inverse pair (C, D) if and only if a3, a3, b,,bs are all nonzero, and then

C = k(1/a2A? + 1/a3A%), D = (1/k)(1/bA% + 1/b4A%) (34)

where k is an arbitrary nonzero number.




4 Uncertain Information Processing

Representation of data by higher dimensional arrays is of significant practical importance. In alarge
number of scientific areas we need to store data (e.g., signals, images, or statistical samples) in the
form of arrays. In the classical approach we consider two-dimensional arrays only which are usually
referred to as the contingency tables or simply as matrices. A number of properties of the data
could be investigated in terms of the structure of the linear algebra generated by these matrices.
However, we could also store data instead in the form of multi-dimensional arrays: one reason for
doing this lies in storing the large data in a compact way. This kind of representation has been found
to be useful in many applications especially in the processing of data in satellite reconnaissance
photographs, medical imagery including X-ray images, image reconstruction, seismic records, and
electron micrographs. There are applications of multi-dimensional arrays in other areas such as the
design of experiments, transportation planning and defense strategic planning [13]. In the design of
VLSI structures and architectures for parallel computers (e.g., a “Hypercube”), multi-dimensional
arrays play a significant role.

Dempster-Shafer theory [17] for belief and plausibility measures is a well known area in knowl-
edge engineering which has found many practical applications, e.g. in decision estimation, evalua-
tion of software prototypes, medical diagnosis, to name just a few. There have been many significant
further developments to this theory, and its relationship with the theory of approximate reasoning
and fuzzy logic, e.g., [18)-[21], [25)-[27]. In a series of papers Yager ([22]-[24]) developed a reasoning
system based on the possibility-probability granule amalgamating the well known Dempster-Shafer
theory and the theory of approximate reasoning. In [22] this is developed by introducing transition
matrices to represent the relationship between variables. The aim of this paper is to attempt to
extend the work of Yager in a multi-dimensional setting. A multi-dimensional array, called a tran-
sition matriz, is defined which stores the joint probabilities of the occurrences of a set of n variables
taking their values in different sets. Using the transition matrix we show that it is possible to
compute the information regarding the probability of occurrences of the variables as certain matrix
products. The multi-dimensional approach thus provides a framework to represent and analyze
‘uncertain data in a compact way.

Let A, B, X be sets with finite cardinalities. Let A: X — [0,1]and B : X — [0,1], B~ (z) :=
1 — B(z). If V is a variable which takes values in X, we say that

V is A.

to indicate that the value taken by V is known to be a member of A. Two measures have been
obtained to examine if V is also in Bj; these are called the possibility measure poss[B/A], and the
certainly measure cert[ B/ A] which are defined as follows:

poss[B/A] := maz.ex[B(z) A A(z)] (35)

cert[BfA] := 1 — poss[B~ [A] (36)

We remark that poss[B/A] measures the degree of overlap of A and B, and cert[B/A) measures
the degree to which B contains A. Further, if A and B are crisp sets (i.e., correspond to actual
subsets of X indicated by characteristic functions), then we see that

1 ifANB#0

0 otherwise (37)

poss[B/ A} = {
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{1 ifacn
cert{ B/A] = { 0 otherwise (38)

Let P(X) denote the set of all subsets of a finite set X. Let m : P(X) — [0, 1] such that

Y m4)=1 | | (39)

A€P(X)

The map m is called the basic probability assignment function (bpa). If A € P(X) and m(A) # 0,

then A is called 2 focal element of m. Let B : X — [0,1]. Then PI(B), the plausibility of B is
defined as

PI(B) = Z Poss(B/A;) * m(A;)) (40)

and Bel(B), the beliefof B, is defined as

Bel(B) = Z:(cert(B/A;) * m(A;). (41)

If m is a basic probability assignment function (bpa) from P(X) then we say that

-

V ism.

Such a proposition is called a possibility-probability granule (P — P-granule). A P — P-granule
is a means of representing uncertain information in a convenient way and this has been studied
extensively in [24] where a methodology has been developed to perform various operations on the
P — P granules and implement inferential reasoning.

4.1 Information Representation By Multi-dimensional Arrays

e The work by us reported here has been now pubhshed in the IEEE Trans. Systems, Man
& Cybernetics, January, 1994.

In [23]) two-dimensional arrays have been used to represent the relationships between variables.
We have extended this approach to multi-dimensional arrays. For the sake of convenience we shall
give here the extension only to three-dimensional arrays from where it could be extended in a
straightforward manner to the n-dimensional case for an arbitrary n and we shall leave the details.

Let U, V,W be three variables taking their vaiues in the sets

X ={z1,.sZn}, Y = {¥1, -y Un}y Z = {21500y 2n} (42)

respectively. Let T be an n X n X n matrix with the property that forall 1 <k <n, 1 <j <
n,1<1<n

pr{U is 2k, Vs yj, Wis ] = (T)ije (43)

where pr denotes the probability. The 3-dimensional matrix T will be called the transition matriz

of U, V,W.

11




For any permutation o of the set {1,2,3}, let 7 denote the n X n X n matrix whose (1, 7, )
entry is equal to (T),(i)o(j)e(k)- Since

priU is z, Vis yj, Wisz,)=pr[V isy;, U is z, W is z;] etc. (44)

it follows that T° = T, i.e., T is symmetric with respect to all permutations of {1,2,3}. For
example, we have (T')133 = (T)213 etc. Further,

T:;=T;.=T,. (45)

It is possible to extend easily the definition of the transition matrix to the case when X,Y, Z do
not have the same cardinalities and then to generalize some of our results which foliow; we omit
the details.

We now interpret some special submatrices of the transition matrix T. Consider T;.. for a fixed
i such that 1 < i < n. This » X » submatrix consists of the it vertical layer of T showing all the
values of probabilities where W is z; and U,V taking all possible values. We have for fixed i, j

n

Z(T),‘jk =1 (46)

k=1

using the standard laws of probability. Thus, in the i layer, the sum of entries on the jt* row is
equal to 1. Again, consider T ;x. This represents a “line” in the 3-dimensional matrix T. We have
for fixed j,k

Y (T =1 (47)
=1

Similarly, we have for fixed i,k
2 (T =1 (48)
Jj=1

The corresponding entries in the above summation come from the matrix 7;.x which consists of the
kt* column of the itk vertical layer of T.

We now show how the transition matrix T could be used to obtain expressions for various kinds
of uncertainties. These results show the significant role played by the multi-dimensional transition
matrices.

Theorem 4.1.1. Let P,Q, R be three 1 X n matrices whose (1,j) entries are defined to be
Pr(W is z;), Pr(V is y;) and Pr(U is z;) respectively. Then, the knowledge of any two of the
matrices P,Q, R is enough to capture the third matriz in a unique manner by using ihe information
regarding the transition matriz T. More specifically, we have for 1 <i < n

(Phi=Qx(RxT. ) =Rx(QxT.,) (49)
(@hi=Px(RxT. ) =Rx(PxT.,;) (50)
(Rhi=Px(@xT.)=Qx(PxTy) (51)
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where ¢ denotes the transpose of a matriz in the usual sense.
The first of the above three shows an interesting symmetry in the sense that Q and A can be
interchanged. Similar symmetry also holds in the other two equations of the above set.

Corollary 4.1.2:

Pj=(RxT.;)xQ"'=(Q x T.;) x R (52)
Also, we have similar eztensions of the second and third equations in Theorem 5.1.1.

Example 4.1.3: Let X = {z,22,23}, Y = {w1,¥2,¥3} and Z = {2, 25, z3}. In the notation
of Theorem 5.1.1, let

P=[a1 5 4], Q=[2 5 4] (53)

Let the transition matrix T be given by

03 0.1 0.6 0.1 0.7 0.2 0.6 02 0.2
. = |01 07 02|, T. = |07 01 02], T3. = |02 09 0.6 (54)
0.6 0.2 0.2 0.2 0.2 0.6 0.2 0.6 0.2

We observe that the 3-dimensional matrix T is symmetric with respect to all possible permutations
of {1,2,3}, as remarked earlier. We now compute the matrix R from P, Q and T. We have

3 .1 .6
(Bu=Px@xTh)=[1 5 4]x([2 6 4 Jx|1 7 2(y=03t6 (55
6 2 2
By computing (R)22,(R)a3 in a similar manner, we get
R=[.376 028 0.344 ] (56)

Notice that the sum of the entries of R is equal to 1, as is expected since they represent probabilities.

We observe that if we had used the identity, (R)1; = @ x (P x T..;)', then the value of R we
get is the same as the one obtained above. Now, we use the value of R obtained already, together
with the given values of P and T to calculate the matrix Q. We get

) = 0.32608 (57)

& =
[CREC N
C -

@u=Px(RxTH)=[1 5 .4]x([.376 28 344 | x :

Similarly, after calculating the remaining entries of Q, we obtain that

Q = .32008 .34528 .32864 | (8)

Comparing the value of @ obtained in (58) with the value of Q given already, we observe that
they are not equal. Thus, the above analysis shows an interesting phenomenon, namely, that the
relationship between the matrices P, @, R is nonlinear. Thus we have:

Remark 4.1.4. Given P and R, the value of Q which can be computed from the transition
matrix T, is not necessarily such that it, together with P (respectively R), would yield again the
given value of R (respectively P) when we use the corresponding equation in the statement of the
Theorem 4.1.1.




4.2 Conclusion of this section

Multidimensional arrays have extensive practical applications in in a large number of other areas.
However, to our knowledge, no work has been done so far to develop the Dempster-Shafer theory
in a multidimensional setting. Here, we have initiated such a study and shown how to manipulate
uncertain information using a multi-dimensional array called the transition matrix. It is hoped that
this correspondence would stimulate further research on multidimensional processing of uncertain
information.

5 Miscellaneous Topics — Summaries

We give in this section summaries of some other works done during the tenure of the grant.

5.1 Parallel Image Processing

The single-instruction-multiple-data (SIMD) mode of computing is considered to be the best mode
for parallel processing in optics and there are several existing parallel optical processors of the SIMD
type including the OPALS [29], DOLCIP [30] and SSP [31]. A comprehensive language called the
image-logic algebra (ILA) has been introduced [32] for optical computing in the SIMD mode,
its system architecture and optical implementation have also been considered 32]. Furthermore,
several algorithms in the ILA have been developed [33] for diverse tasks such as the computer-aided
design (CAD) and numerical datia processing — these show the power and versatility of the ILA
language in handling a wide range of problems. Our objective is to explore further applications
of the ILA to do parallel optical image processing. It has been already observed [32]-[33] that
the principal operations of mathematical morphology and binary image algebra can be described
by the ILA. We show that only a few of the basic operations of the ILA are needed to develop a
number of parallel algorithms for image processing if we use an algebraic method for processing
images. We have shown that the optical parallel processing of binary images can be developed in
the single-instruction-multiple-data (SIMD) generic language called the image-logic algebra (ILA),
using the polygonal approach for representing images.

o This work has been accepted for publication as a single-author paper in the journal Applied
Optics.

5.2 Permutation Representation By Trees

Permutations arise naturally in connection with problems in many fields such as data encryption,
parallel processing, computer networking and computational algebra. Extensive work has been
done in the past to represent and generate permutations (see e.g., Lehmer [39] and Sedgewick [?]
for surveys). It is of considerable interest to store and retrieve permutations (and combinations)
in an efficient manner in the computer memory. Recently, Arnow [36] developed an interesting
method to store permutations, combinations and dihedral elements in a “tree”-structure, and gave
some algorithms to generate the nodes and traverse these trees. We have developed algorithms to
represent permutations and combinations in the lezicographic order. Lexicographic (or dictionary)
order has numerous practical applications — in discrete mathematics (e.g., kn:Graham), in data
structures (e.g., kn:Aho, kn:Gonnet), and in parallel processing and networking (e.g., kn:Akl). In
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Liu kn:Liu, algorithms to generate permutations in lexicographic order have been described. How-
ever, he does not address the problems of storing and retrieving permutations which are certainly
problems of considerable practical interest. The main contribution of my work is to explore these
problems using the tree data structure. Our algorithms can be implemented using any programming
language which is capable of recursive calls.

o Our paper has been accepted for publication in the journal Computers & Math. Appli-
cations.

5.3 3D Polygonal Arcs

During an extended visit to the Center for Automation Research, University of Maryland, College
Park, the P.I. collaborated with Professor Azriel Rosenfeld to investigate geometric properties of
3D polygonal arcs.

A polygonal arc in d dimensions is a geometrical figure having n sides defined by a sequence of
(n+1) d-tuples of (real) coordinates representing the vertices, successive vertices are the endpoints
of a common side. A polygonal arc is called a (closed) polygon if the last vertex coincides with
the first vertex. Polygonal arcs and polygons are of significant interest in robot vision and arise
in a number of problems such as the analysis of the edges of solids, matching, and path planning.
Various aspects of the case d = 2 have been investigated by a number of authors. We investigate
properties polygonal arcs and polygons with special emphasis to the case d = 3. We assume that all
the vertices of a polygonal arc (or polygon) that we shall study in this paper, lie inside a bounded
region. One method to represent a polygonal arc (up to translation and rotation) is by the lengths
of its n sides and the n — 1 angles between successive sides. This representation is convenient, for
example, when the sides of the polygonal arc are parallel to the coordinate axes: such arcs are called
isothetic arcs. In [41] we have investigated 2 dimensional isothetic arcs where the angles between
consecutive sides are specified compactly by single bits indicating whether the angle corresponds
to a left turn or a right turn. (For a closed polygon there is also an angle between the first and last
sides, but it is redundant, and we can tell from the n lengths and n — 1 angles whether or not the
polygon is closed.)

Given a polygonal arc in an arbitrary dimension d, one sees that some geometrical and topo-
logical properties can be examined. Similarly, one can decide about the intersection of two (or
more) polygonal arcs or polygons. In the case of dimension 2 (only), one has that a closed non-
selfintesecting polygon divides the plane into an inside and an outside, and also we can decide if
one of two polygons surrounds the other. When the dimension of the space is 3, 2 more interesting
issue arises: to determine if a closed polygon is knotted, or if two closed polygons are linked. We
study these questions. Our solution to the problem makes use of homotopy groups computed from
so-called Wirtinger projection(s) of the polygon(s) onto a plane.

¢ This joint work with Prof. A. Rosenfeld has now been published in June, 1994 in the J.
Visual Communication and Image Representation.
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List of Papers Written Under the Project

. P. Bhattacharya and N.P. Mukherjee, “A Multi-dimensional Approach to the Representation
of Uncertain Information”, IEEE Trans. on Systems, Man & Cybernetics, vol. 24, no.
1, pp. 107-111 (1994).

D.M. Mesner and P. Bhattacharya, “A Ternary Algebra arising from Association Schemes on
Triples”, Journal of Algebra (Publisher: Academic Press), vol. 164, no. 1, pp. 595-613,
(1994).

. P. Bhattacharya and A. Rosenfeld, “Polygons in Three Dimensions”, J. Visual Communi-
cation & Image Representation, ivol. 5, pp. 139-147 (194).

P. Bhattacharya, “Parallel, Optical Image Processing by the Image-Logic Algebra”, Applied
Optics (Publisher: Optical Society of America), accepted for publicatic ~heduled to
appear in vol. 33.

P. Bhattacharya, “On The Representation of Permutations By Trees”, Computers & Math.
Applications (Publisher: Pergamon Press), accepted for publication.

". P.Bhattacharyaand S. Hungenhally, ” A Mathematical Framework for Visual Receptive Fields

Using Discriminant Functions”, Proc. [EEE Internat.Conf. on Systems, Man & Cybernetics,
San Antonio, Texas, October, 1994, accepted.

P. Bhattacharya, “A New Three Dimensional Transform Using A Ternary Product”, submit-
ted to JEEE Trans. Signal Processing. currently under review.

P. Bhattacharya, “A Three-Dimensional Transform Using Ternary Products and Inverse
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